This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 817991

MOST DEMANDING STANDARD COMBINATION TO SUPPORT BIPV DEVELOPMENT AND SUSTAINABILITY – FIRE SAFETY

Simon BODDAERT - Head of PV Innovation

P. Bonomo/ F. Parolini – SUPSI, M. Awais / C. Pirota – PIZ Cladding system, J. Jimenez – ONYX SOLAR,

le futur en construction

D. Valencia/ J. M. Vega de Seoane - TECNALIA

- How to tackle BIPV system in the current standard environment
- Normative procedures PV / BIPV
- Why deal with this issue
- How to answer this issue
- Methodology main frame
- Methodology on BIPV solution
- Conclusion and perspectives

HOW TO TACKLE BIPV SYSTEM IN THE CURRENT STANDARD ENVIRONMENT

MOST DEMANDING STANDARD COMBINATION TO SUPPORT BIPV DEVELOPMENT AND SUSTAINABILITY – FIRE SAFETY

CPR and building code

<u> </u>	A 5.2.1	Fire reaction / resistance
	EN 1364-1:2015	Fire resistance tests for non-loadbearing elements - Part 1: Walls
	EN 1364-2:2018	Fire resistance tests for non-loadbearing elements - Part 2: Ceilings
	EN 1364-3:2014	Fire resistance tests for non-loadbearing elements - Part 3: Curtain walling - Full configuration (complete assembly)
	EN 1364-4:2014	Fire resistance tests for non-loadbearing elements - Part 4: Curtain walling - Part configuration
	EN 1364-5:2017	Fire resistance tests for non-loadbearing elements - Part 5: Air transfer grilles
	EN 1363: Part 1: 2012	Fire resistance tests (Part 1: General requirements)
	EN 1363: Part 2: 1999	Fire resistance tests (Part 2: Alternative and additional procedures)
e	EN 1365: Part 1: 2012	Fire resistance tests for load bearing elements (Part 1: Walls)
-tr	EN 1365: Part 2: 2014	Fire resistance tests for load bearing elements (Part 2: Floors and roofs)
tt.	EN 1365: Part 3: 1999	Fire resistance tests for load bearing elements (Part 3: Beams)
	EN 1365: Part 4: 1999	Fire resistance tests for load bearing elements (Part 4: Columns)
	EN 1366: Part 2: 2015	Fire resistance tests for service installations (Part 2: Fire dampers)
lice	EN 1366: Part 3: 2009	Fire resistance tests for service installations (Part 3: Penetration seals)
Ser	EN 1366: Part 6: 2004	Fire resistance tests for service installations (Part 6: Raised access and hollow core floors)
	EN 1366: Parts 6-8-9 + A1	Smoke, doors, openable windows and ducts
	EN13501-1:2007	Fire classification of construction products and building elements-Part1: Classification using data from reaction to fire tests
	EN 13820:2003	Thermal insulating materials for building applications - Determination of organic content
	EN 13823:2010+A1:2014	Reaction to fire tests for building products - Building products excluding floorings exposed to the thermal attack by a single burning item
	EN 16733:2015	Reaction to fire tests for building products - Determination of a building product's propensity to undergo continuous smoldering
	EN 45545-2	European Union Standard Fire Testing to Railway Components
	EN ISO 1182:2010	Reaction to fire tests for products — Non-combustibility test
	EN ISO 1716:2018	Reaction to fire tests for products — Determination of the gross heat of combustion (calorific value)
	ISO/TS 3814:2014	Standard tests for measuring reaction-to-fire of products and materials — Their development and application
	ISO 5657:1997	Reaction to fire tests — Ignitability of building products using a radiant heat source
	ISO 5658-2:2006	Reaction to fire tests — Spread of flame — Part 2: Lateral spread on building and transport products in vertical configuration
	ISO 5660-1:2015	Reaction-to-fire tests — Heat release, smoke production and mass loss rate — Part 1: Heat release rate (cone calorimeter method) and smoke pro
	EN ISO 9239-2:2002	Reaction to fire tests for floorings — Part 2: Determination of flame spread at a heat flux level of 25 kW/m2
	EN ISO 11925-2	Reaction to fire tests. Ignitability of building products subjected to direct impingement of flame . Part 2
	NF P 92 - 501	Safety against fire - Building materials - Reaction to fire tests - Radiation test used for rigid materials. or for materials on rigid substrates (floorin
	NF P 92 - 503	Safety against fire - Building materials - Reaction to fire tests. Electrical burner test used for flexible materials
	NF P 92 - 504	Safety against fire - Building materials - Reaction to fire tests - Flame persistence test and speed of the spread of flame.
	NF P 92 - 505	Safety against fire - Building materials - Reaction to fire tests - Test used for thermal melting materials - Dripping test.
	NF P 92 - 506	Safety against fire - Building Material - Flooring
	NF P 92 - 507	Fire safety - Building - Interior fitting materials - Classification according to their reaction to fire
	IEC 60695-2-11:2014	Fire hazard testing - Part 2-11: Glowing/hot-wire based test methods - Glow-wire flammability test method for end-products (GWEPT)
	CEN TS 1187	Test methods for external fire exposure to roofs
	ISO11925-2:2010	Reaction to fire tests - Ignitability of products subjected to direct impingement of flame - Part 2: Single-flame source test
	XP CEN / TS 1187 roof fire r	isk - tests 1, 2 and 3
	LEPIR II : large scale facade	s test
	MINI LEPIR : R&D tests bend	n (middle size)
	NF EN ISO 4589-2 or EN 45	545 - Limit oxygen indicator
	NF ISO 19702 ou EN 45545	- Spectrophotometer with Fourier transformation
	ISO 13784-1 : 2002	Reaction-to-fire tests for sandwich panel building systems - Part 1: Test method for small rooms > roof

	DEMO SITE #1 - Product 1	
Demo MANAGER ISFOC (Puertollano, Spain, Lat.38°41		
Product(s) typology	Glass-glass bifacial modules	
Manufacturer(s)	ONYX	
Implementation Type	Balustrades	

Standards to consider To assess BIPV system

NORMATIVE PROCEDURES PV / BIPV

WHY DEAL WITH THIS ISSUE

- To support growth of BIPV market
- To reduce time and cost for BIPV
- To bring more competitiveness
- To ensure a similar access market time as PV

- To improve confidence in BIPV solution
- BIPV as a building elements
- Support innovation in BIPV Field
- Reach the market

HOW TO ANSWER THIS ISSUE

- Three approaches have been studied
 - Evolution 1
 - Definition of new standards
 - Merge of actuals standards with extension/modification and addition of other topics
 - New standard numbering by components / by family / .. Duration of this process / peer reviewing ?
 - Evolution 2
 - Adaptation of current standards
 - Capitalize on actual standards and extend/modify some topics
 - > retesting guidelines with specific applications (by components / by family /)
 - Evolution 3
 - Take significant/relevant part of standards
 - Identify possible combination, addition of several relevant standard
 - Process adapted to each demo case methodology validation by partners experts in BIPV
- Time baseline is used to identify the most supporting answer

METHODOLOGY MAIN FRAME

To apply combination approach on Fire tests

- New working pathway to develop specific BIPV assessment solution
- Validate this NTP by experimentation
- Realistic test conditions / system wide
- Most demanding requirements

COLOR CODE		
	ENERGY	
	ELECTRICITY	
	MECHANICAL	
	FIRE	

COLOR CODE

METHODOLOGY MAIN FRAME

METHODOLOGY MAIN FRAME

Definition of a specific assessment solution

COLOR CODE		
	ENERGY	
	ELECTRICITY	
	MECHANICAL	
	FIRE	

COLOR CODE Fire NTP with electric load - procedure ENERGY ELECTRICITY MECHANICAL Electric parameters from datasheets FIRE Façade BIPV SETUP Control interface **PV** Datasheets TopControl V4.11.00 (Device on COM7 @38400Baud: TopCon CTR V4.2x) summer in the second second File Window Help CONTROL | STATUS | ERROR | FUNCGEN SCOPE | DEVICE INFO Dynamic DC Load Control software Channel 1 Zoomed Auto scale Scope Configuration002.cfg <4.21.41> siCTR_ActUsystem Address: 0x300d86 Select signal Scope active 100 V/Div hamilten Channel 2 DC PV generator siCTR_ActIsystem Address: 0x300d87 Select signal ✓ active -0.19 A Scode Reverse mode connection 0.1 -A/Div Channel 3 Electric compatibility siCTR_ActControllerOut Select signal Address: 0x300daa 25,0 min 33,3 n 8,3⁻min 16,7 min active 388 Scope Most demanding STC conditions -2-50 -/Div #sam Time resolution Trigger - Channel 4 no trigger selected 2.00 -Is analyse Adaptable to any cell categories Address: 0x000000 **bCTR** ConstVoltageModule Record time: 34.13 min Select triager... ons . Address: 0x300dc7 Actual value Select signal State Cursor ∇ Level ad data Scope active Time: 34.10 min t for triaaer – Up to 10 KWp -Mode Immediately 0.000 min -Delay Value: -2.2 Div ord (100%) Forced breakdown 30 mn 1 mn 1 mn Test duration stabilization stabilization

Façade requirement and NTP

Glass/Glass module with C-Si cells (ONYX) on cladding system (PIZ)

COLOR CODE		
	ENERGY	
	ELECTRICITY	
	MECHANICAL	
	FIRE	

No Busbar failures

No JB failures

Result and observation

– From Fire point of view

	$Av.(R_0)$	$Av.load.(R_1)$	Std.dev.
FIGRA(0.2) W/s	37.7	38.3	0.4
THR(600) M	5.1	4.95	0.1
SMOGRA cm2/s2	2.2	2.2	0
TSP(600) m2	32	28.3	-2,1
Potential classification	Av	. Av.load	Trend
Class	A2/	B A2/B	=
Smoke production	s1	s1	=

From alact	ric n	aint a	afvia	,
Flaming droplet/particules	d0	d0	=	
moke production	51	51		

From electric point of view

No discontinuity No electric arc

 $R_{fr} = \frac{R_1}{R_0} = 1$

Passed test

Validated methodology

BIPV

Validation NTP on different PV solution

Flexible module with CIGS cells (FLISOM) on cladding system (PIZ)

COLOR CODE		
	ENERGY	
	ELECTRICITY	
	MECHANICAL	
	FIRE	

No fire penetration

Bonding effects

Result and observation

– From Fire point of view

	$Av.(R_0)$	Av.load.(R1)	Std.dev.
FIGRA(0.2) W/s	1161.3	1017.3	-101
THR(600) M	21.3	14.7	-4.6
SMOGRA cm2/s2	27.1	18.4	-6.2
TSP(600) m2	61.5	35.8	-20,7
Potential classification	Av	. Av.load	Trend
Class	E	E	=
Smoke production	s2	s1	Λ
T 1 1 1 1 1 1 1			

– From electric point of view

No discontinuity No electric arc

 $R_{fr} = \frac{R_1}{R_0} > 1$

Passed test

Validated methodology

CSTB *le futur en construction*

Roof requirements and NTP validation (CEN/TS 1183) and classification according to NF EN 13501-5

Flexible module with CIGS cells (FLISOM) on solrif® integration system (SCHWEIZER)

No Busbar failures

No JB failures

CSTB le futur en construction

Roof requirements and NTP validation (CEN/TS 1183) and classification according to NF EN 13501-5 DEMOREQUIREMENT

Flexible module with CIGS cells (FLISOM) on solrif® integration system (SCHWEIZER)

MOST DEMANDING STANDARD COMBINATION TO SUPPORT BIPV DEVELOPMENT AND SUSTAINABILITY – FIRE SAFETY

Result and observation

– From	Fire	point	of	view
--------	------	-------	----	------

Potential classification	Av.	Av.load	Trend	
Propagation time	Tp > 30 min	Tp > 30 min	=	
External prop. time	$TE = 30 \min$	$TE = 30 \min$	=	
Classification	B ROOF (t3)	B ROOF (t3)	=	P
			R_{f}	$r = \frac{R_1}{R_0} = 1$

Passed test

Validated methodology

B	IPV	1
120	030	/

– From electric point of view	of view
-------------------------------	---------

No discontinuity No electric arc

Firebrand locations

- NTP validation on combination tests Building/electric load
- NTP could be applied on any BIPV categories
- NTP takes into account any cells components
- A way to save time and cost
- Support manufacturers in components definition
- Accelerate market access for several BIPV solution and cell technologies
- Insurers proof of confidence to adopt BIPV in building projects
 - > no additional risks observed even in most demanding conditions

PERSPECTIVES

- Specific electric load definition
- Arc detection by module
- Identification with high accuracy of weak points
- Insights to support improvement and BIPV optimization
- to integer other NTP in the process and accelerated aging effects
- Reduce as short as standard procedure to save more time
- Support the definition of specific BIPV standards to boost BIPV market

www.bipvboost.eu

Thank you for your attention

Project Partner

Simon BODDAERT CSTB Simon.boddaert@cstb.fr www.cstb.fr

Project Coordinator

Jose M. Vega de Seoane TECNALIA josemaria.vega@tecnalia.com www.tecnalia.com

This * * * rese sole doe

This project has received funding from the *European Union's Horizon 2020 research and innovation programme under grant agreement* N° 817991. The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Commission. The European Commission is not responsible for any use that may be made of the information contained therein.

Project Partners

